Conditional Probability of Hitting Barrier

A model is developed for evaluating the conditional probability of hitting an upper barrier before a lower barrier, and vice versa, for a tied down geometric Brownian motion with drift. The method produces an analytical value for this probability, assuming that the barrier levels are constant and continuously monitored.

Let $S t$ denote the price at time equal to t of an underlying security. Furthermore assume that the process $\{S t \mid t \hat{I}[0,+¥)\}$ satisfies, under some measure P, the stochastic differential equation

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d W_{t}\right), \quad t \in[0,+\infty)
$$

Also let

- Hu and $H d$ (where $H H u d>$) respectively denote constant upper and lower barrier levels,
$\cdot \mathrm{t} 1=\inf \{ \} \inf t^{3} 0 \mid, S^{3} H t u$ and $\mathrm{t}\left\} 2=\inf t^{3} 0 \mid S £ H t d\right.$ respectively denote the first hitting times of the barrier levels $H u$ and $H d$ (here we assume that $H S H d u \ll 0$), and
- T (where $T>0$) denote a length of time.

We consider the conditional probability that the upper barrier level is crossed during the interval $[0, T]$, and for a smaller time than for which the lower barrier level is crossed, given that $S y T=$, that is,

$$
P\left(\tau_{1} \leq T, \tau_{1}<\tau_{2} \mid S_{T}=y\right)
$$

An analytical value for this conditional probability is provided in [Myint, 1997]. The derivation is based, in part, on an application of Theorem 4.2 in [Anderson, 1960] (see page 175), which gives an analytical value for a similar conditional probability but with respect to standard Brownian motion (see https://finpricing.com/lib/FxForwardCurve.html)

We first introduce some notation. Specifically let

$$
\tau_{1}^{f, \gamma}=\inf \{t \geq 0 \mid f(t) \geq \gamma\}
$$

and

$$
\tau_{2}^{f, \gamma}=\inf \{t \geq 0 \mid f(t) \leq \gamma\}
$$

denote first hitting times, respectively from below and from above, of the constant barrier level g .

Next let

- $\{W t\} t \mid \hat{I}[0,+¥)$ denote standard Brownian motion under a probability measure P, And
- g 1 and g 2 (where g $1>0$ and g $2<0$) respectively denote constant upper and lower barrier levels.

For standard Brownian motion, consider the conditional probability that the upper barrier level is crossed during the interval $[0, T]$, and for a smaller time than for which the lower barrier level is crossed, given that $W y T=$, that is,

$$
P\left(\tau_{1}^{W, \gamma_{1}} \leq T, \tau_{1}^{W, \gamma_{1}}<\tau_{2}^{W, \gamma_{2}} \mid W_{T}=y\right)
$$

From Theorem 4.2 in [Anderson, 1960] (with d d $12==0$), this conditional probability is equal to

$$
\left\{\begin{array}{ll}
\sum_{n=1}^{+\infty}\left[e^{\frac{-2}{T}\left(n^{2} \gamma_{1}\left(\gamma_{1}-y\right)+(n-1)^{2} \gamma_{2}\left(\gamma_{2}-y\right)-n(n-1)\left[\gamma_{1}\left(\gamma_{2}-y\right)+\gamma_{2}\left(\gamma_{1}-y\right)\right]\right)}\right. \\
\left.-e^{\frac{-2}{T}\left[n^{2}\left(\gamma_{1}\left(\gamma_{1}-y\right)+\gamma_{2}\left(\gamma_{2}-y\right)\right)-n(n-1) \gamma_{1}\left(\gamma_{2}-y\right)-n(n+1) \gamma_{2}\left(\gamma_{1}-y\right)\right]}\right], & \text { if } y \leq \gamma_{1}, \\
1-\sum_{n=1}^{+\infty}\left[e^{\left.\frac{-2}{T}(n-1)^{2} \gamma_{1}\left(\gamma_{1}-y\right)+n^{2} \gamma_{2}\left(\gamma_{2}-y\right)-n(n-1)\left[\gamma_{1}\left(\gamma_{2}-y\right)+\gamma_{2}\left(\gamma_{1}-y\right)\right]\right)}\right. & \\
& \left.e^{\left.\frac{-2}{T}\left(n^{2}\left[\gamma_{1}\left(\gamma_{2}-y\right)+\gamma_{2}\left(\gamma_{2}-y\right)\right]-n(n+1) \gamma_{1}\left(\gamma_{2}-y\right)-n(n-1) \gamma_{2}\left(\gamma_{1}-y\right)\right]\right)}\right],
\end{array} \quad \text { if } y \geq \gamma_{1} .\right.
$$

Also for standard Brownian motion consider the probability that the upper barrier level is crossed during the interval $[0, T]$, and for a smaller time than for which the lower barrier level is crossed, and that $W T$ lies in an interval I, that is,

$$
P\left(\tau_{1}^{W, \gamma_{1}} \leq T, \tau_{1}^{W, \gamma_{1}}<\tau_{2}^{W, \gamma_{2}}, W_{T} \in I\right)
$$

From Bayes' Theorem and (1), this probability is equal to

$$
\int_{I} g(y) P\left(\tau_{1}^{W, \gamma_{1}} \leq T, \tau_{1}^{W,, \gamma_{1}}<\tau_{2}^{W, \gamma_{2}} \mid W_{T}=y\right) d y
$$

For the process $\{S t\} t \mid \hat{I}[0,+¥)$, consider the conditional probability that the lower barrier level is crossed during the interval $[0, T]$, and for a smaller time than for which the upper barrier level is crossed, given that $S y T=$, that is,

$$
P\left(\tau_{2}^{s, \gamma_{2}} \leq T, \tau_{2}^{s, \gamma_{2}}<\tau_{1}^{s, \gamma_{1}} \mid S_{T}=I\right) .
$$

FP chooses to obtain this conditional probability by considering the identity

$$
\begin{aligned}
P\left(S_{T} \in I\right)= & P\left(\tau_{1}^{s, \gamma_{1}} \leq T, \tau_{1}^{s, \gamma_{1}}<\tau_{2}^{s, \gamma_{2}}, S_{T} \in I\right) \\
& +P\left(\tau_{2}^{s, \gamma_{2}} \leq T, \tau_{2}^{s, \gamma_{2}}<\tau_{1}^{s, \gamma_{1}}, S_{T} \in I\right) \\
& +P\left(\tau_{1}^{s, \gamma_{1}}>T, \tau_{2}^{s, \gamma_{2}}>T, S_{T} \in I\right),
\end{aligned}
$$

Given its similarity to the result for hitting an upper barrier before a lower barrier, we would like to recommend that this approach be considered for use in a future implementation of this method to price an actual deal.

